If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x^2=17
We move all terms to the left:
3x^2+4x^2-(17)=0
We add all the numbers together, and all the variables
7x^2-17=0
a = 7; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·7·(-17)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{119}}{2*7}=\frac{0-2\sqrt{119}}{14} =-\frac{2\sqrt{119}}{14} =-\frac{\sqrt{119}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{119}}{2*7}=\frac{0+2\sqrt{119}}{14} =\frac{2\sqrt{119}}{14} =\frac{\sqrt{119}}{7} $
| (x-5)(x-9)=x×x+3 | | 2x+7-5x-12=8x-3 | | x÷8-2=1 | | x+x+(-10)=12 | | 8+4n=6-16n | | 4y-2=34 | | 14x^2-12x=-24 | | 6x+1/4(2x-1)=10 | | 5m=35+75 | | -3(x-1)+9=106 | | –3(x–14)+9x=6x+42 | | 3x=5x+22 | | 4x-2x-6=5x-15 | | -3(x-14)}+9x=6x+42 | | 3x/4-1=x/2+2 | | M=x-7 | | -3(x+5)=5(x+2) | | 18=m-(-4) | | 66=3w | | 758+4x=1284 | | 2=6(5-n) | | 7x/6-8=x/2+4 | | x/6=9/10 | | -7x+-63=9x-45-14 | | 114+6a-8=18 | | 19=m-(-5) | | 3x^2=12x+9 | | 6y=4y+22 | | n/13=15 | | 6 = 3 d 2 | | x+2=-20+6 | | 2(1x+4)=10 |